Null Form Estimates for (1/2,1/2) Symbols and Local Existence for a Quasilinear Dirichlet-wave Equation

نویسنده

  • Christopher D. Sogge
چکیده

We establish certain null form estimates of Klainerman-Machedon for parametrices of variable coefficient wave equations for the convex obstacle problem, and for wave equations with metrics of bounded curvature. These are then used to prove a local existence theorem for nonlinear Dirichlet-wave equations outside of convex obstacles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 48 9 v 1 [ m at h . A P ] 1 6 N ov 2 00 6 GLOBAL EXISTENCE OF NULL - FORM WAVE EQUATIONS IN EXTERIOR DOMAINS

Abstract. We provide a proof of global existence of solutions to quasilinear wave equations satisfying the null condition in certain exterior domains. In particular, our proof does not require estimation of the fundamental solution for the free wave equation. We instead rely upon a class of Keel-Smith-Sogge estimates for the perturbed wave equation. Using this, a notable simplification is made ...

متن کامل

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

Global Existence of Quasilinear, Nonrelativistic Wave Equations Satisfying the Null Condition

We prove global existence of solutions to multiple speed, Dirichlet-wave equations with quadratic nonlinearities satisfying the null condition in the exterior of compact obstacles. This extends the result of our previous paper by allowing general higher order terms. In the currect setting, these terms are much more difficult to handle than for the free wave equation, and we do so using an analo...

متن کامل

Global Existence of Solutions to Multiple Speed Systems of Quasilinear Wave Equations in Exterior Domains

1. Introduction. The goal of this paper is to prove global existence of solutions to quadratic quasilinear Dirichlet-wave equations exterior to a class of compact obstacles. As in Metcalfe-Sogge [22], the main condition that we require for our class of obstacles is exponential local energy decay (with a possible loss of regularity). Our result improves upon the earlier one of Metcalfe-Sogge [22...

متن کامل

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008